Техники (приемы) – графические способы представления информации. Интеллект карты- гениальный метод для запоминания информации Графический способ представить идеи концепции

Техники (приемы) – графические способы представления информации.

1.ФГОС: смысловое чтение и работа с текстом (требования)

Выпускник основной школы должен научиться: ориентироваться в содержании текста и понимать его целостный смысл; находить в тексте требуемую информацию (пробегать текст глазами, определять его основные элементы, сопоставлять формы выражения информации в запросе и в самом тексте, устанавливать, являются ли они тождественными или синонимическими, находить необходимую единицу информации в тексте); решать учебно-познавательные и учебно-практические задачи, требующие полного и критического понимания текста; структурировать текст, используя нумерацию страниц, списки, ссылки, оглавления; проводить проверку правописания; использовать в тексте таблицы, изображения; преобразовывать текст, используя новые формы представления информации: формулы, графики, диаграммы, таблицы; переходить от одного представления данных к другому; интерпретировать текст; откликаться на содержание и форму текста; на основе имеющихся знаний, жизненного опыта подвергать сомнению достоверность имеющейся информации, обнаруживать недостоверность получаемой информации, пробелы в информации; находить путь восполнения этих пробелов; в процессе работы с одним или несколькими источниками выявлять содержащуюся в них противоречивую, конфликтную информацию; использовать полученный опыт восприятия информационных объектов для обогащения чувственного опыта, высказывать оценочные суждения и свою точку зрения о полученном сообщении (прочитанном тексте).

2.Причины низкого уровня УУД, связанных с работой с текстом : образовательный процесс ориентирован, главным образом, на формирование репродуктивных характеристик мышления, на уроках редко создаются проблемные ситуации, практически не применяются интерактивные технологии (диалоговые, игровые, задачные, проблемные) учебный материал преподносится как сумма фактов, не подвергающаяся впоследствии критической оценке, поощряется воспроизведение учащимися общепринятых, порой банальных подходов к трактовке философских, научных и нравственных проблем, литературных героев не учитывается проявление детской любознательности, стремление выработать собственную точку зрения по определенному вопросу, желание сформировать способность отстоять ее логическими доводами, использовать исследовательские методы для доказательства согласия/несогласия с решением выявленной проблемы

3. Критическое мышление

Критическое мышление -это один из видов интеллектуальной деятельности человека, который характеризуется высоким уровнем восприятия, понимания, объективности подхода к окружающему его информационному полю.

Критическое мышление есть мышление самостоятельное: каждый формулирует свои идеи, оценки и убеждения независимо от остальных.

Информация является отправным, а отнюдь не конечным пунктом критического мышления.

Критическое мышление начинается с постановки вопросов и уяснения проблем, которые нужно решить.

Критическое мышление стремится к убедительной аргументации.

Критическое мышление есть мышление социальное. Всякая мысль проверяется и оттачивается, когда ею делятся с другими.

4. В чем нам помогут приемы работы с текстом?

Выделять причинно-следственные связи;

Рассматривать новые идеи и знания в контексте уже имеющихся;

Отвергать ненужную или неверную информацию;

Понимать, как различные части информации связаны между собой;

Выделять ошибки в рассуждениях;

Делать вывод о том, чьи конкретно ценностные ориентации, интересы, идейные установки отражают текст или говорящий человек;

Избегать категоричности в утверждениях; 8.быть честным в своих рассуждениях;

Определять ложные стереотипы, ведущие к неправильным выводам;

Выявлять предвзятые отношение, мнение и суждение;

Уметь отличать факт, который всегда можно проверить, от предположения и личного мнения;

Подвергать сомнению логическую непоследовательность устной или письменной речи;

Отделять главное от несущественного в тексте или в речи и уметь акцентировать внимание на первом.

1.Кластер («гроздь»)

Кластер –графическая организация/систематизация материала Кластер (гроздь, созвездие, пучок). Составление кластера позволяет учащимся свободно и открыто думать по поводу какой-либо темы. В центре всегда ключевое понятие. Правила очень простые. Рисуем модель солнечной системы: звезду, планеты и их спутники. В центре звезда - это наша тема, вокруг нее планеты - крупные смысловые единицы, соединяем их прямой линией со звездой, у каждой планеты свои спутники, у спутников свои. Наши мысли уже не громоздятся, а «гроздятся» - располагаются в определенном порядке.

С помощью кластеров можно в систематизированном виде представить большие объемы информации (ключевые слова, идеи). Кластер используется, когда нужно собрать у учеников все идеи или ассоциации связанные с каким-либо понятием (например, с темой урока

2. Концептуальное колесо

Прием «концептуальное колесо» эффективно использовать на стадии вызова. Учащиеся подбирают синонимы к слову (теме), находящихся в ядре понятийного «колеса», и вписывают в секторы колеса. Задание выполняется индивидуально или в группе. Данный приём обогащает лексический запас ученика.

3. Конструктивная таблица (Знаем - Хотим узнать – Узнали)

Данный прием обязывает не просто читать, а вчитываться в текст, отслеживать собственное понимание в процессе чтения текста или восприятия любой иной информации. Использование маркировочных знаков позволяет соотносить новую информацию с имеющимися представлениями

4. Дерево предсказаний

Этот прием помогает строить предположения по поводу развития сюжетной линии в рассказе. «Дерево предсказаний» целесообразно использовать на стадии закрепления лексики с целью анализа какой – либо проблемы, обсуждения текста, прогнозирования событий.

5. Денотатный граф

Выделение ключевого слова или словосочетания. Чередование имени и глагола в графе (именем может быть одно существительное или группа существительных в сочетании с другими именными частями речи; глагол выражает динамику мысли, движение от понятия к его существенному признаку).

6. Фишбоун

Такой вид диаграмм позволяет проанализировать причины событий более глубоко, поставить цели, показать внутренние связи между разными частями проблемы.

7. Пирамида рассказа

Этот прием используется при изложении содержания текста или темы. Верхушка пирамиды представляет главного героя или название темы, далее в 2-х словах предлагается описание, в 3-х словах – описать место действия, в 4-х и последующих – основные события и развязку.

Пирамидная история 1. Имя героя вашей истории (героем может быть человек, животное, овощ, неодушевленный предмет) 2. Два слова, описывающих героя (внешность, возраст, черты характера, качества) 3. Три слова, описывающих место действия (страна, местность, общественные места и др.) 4. Четыре слова, описывающих проблему истории (деньги, заблудиться, встретить, любовь…) 5. Пять слов, описывающих первое событие (что явилось причиной проблемы в истории?) 6. Шесть слов, описывающих второе событие истории (что происходит с героем и его окружением по ходу сюжета?) 7. Семь слов, описывающих третье событие (что предпринимается для решения проблемы?) 8. Восемь слов, описывающих решение проблемы. Номер строки обозначает количество слов, вписываемых в "Пирамиду"

1.Лицей

2. Императорский, Царскосельский

3. Санкт-Петербург, Царское село, дом

4. Свободолюбие, мировоззрение, творчество, талант

5. Наставники, воспитанники, дружить, думать, спорить

6. Режим, подъем, словесность, классы, уроки, развлечения

7. Первый, выпуск, государственная служба, провести, вместе, родной

8. Пушкин, остался верен, свободолюбивый дух, Лицей, дружба, Отечество Пример «пирамидной» истории

8. Инсерт

Учащиеся могут предложить свои варианты пометок на полях. Ставить их необходимо всякий раз, как что-то в тексте приковывает внимание по какой-либо причине. Результатам разметки может быть составлена таблица, в которую в виде тезисов заносятся сведения из текста.

9. “Mind-Map” (Карта памяти)

Карта памяти интегрируют изображения, цвета и символы, можно говорить о них как о методе «целостного» мышления.

Советы тем, кто составляет карту памяти.

1.В центре страницы напишите и обведите главную идею.

2.Для каждого ключевого момента проведите расходящиеся от центра ответвления, используя ручки разного цвета.

3.Для каждого ответвления напишите ключевое слово или фразу, оставив возможность для добавления деталей.

4.Добавляйте символы и иллюстрации.

5.Пишите разборчиво ЗАГЛАВНЫМИ буквами.

6.Важные идеи записывайте более крупным шрифтом.

7.Придайте карте памяти личностный характер.

8.Подчеркивайте слова и используйте жирные буквы.

9.Проявляйте творческое начало и фантазию.

10.Для выделения определенных элементов или идей используйте линии произвольной формы.

11.При построении карты памяти располагайте лист бумаги горизонтально.

10. Синквейн.

По окончании изучения каждой пройденной темы учениками разрабатываются и защищаются творческие проекты и мини - проекты, создаются коллажи и мультимедийные продукты (отчет по изученной теме, сообщения о дополнительно изученном материале с использованием различных техник, а также кроссворды, тесты, головоломки);

Выработка творческой концепции в средовом проектировании выливается в особую очень емкую фазу предпроектного анализа, далеко выходящую по содержанию за рамки аналогичных работ в ортодоксальной архитектурной методологии.

Качество концепции можно оценить только по одному критерию – ее полезности для проекта. Если в Техническом Задании требования к дизайну строго описаны, и с Заказчиком достигнуто полное взаимопонимание и доверие, то формализованная концепция будет лишней. Бессмысленно делать концепцию и в недорогих проектах.

Концепция дизайна – документ, который содержит описание того, как Ваш дизайн будет выглядеть и работать, какие там будут элементы, как они примерно будут располагаться, где будет графика, а где текст, что будет подаваться ярко, а что фоном, как будут расставлены смысловые маркеры и при помощи каких инструментов дизайн будет подталкивать пользователя к требуемым действиям (заказу, звонку, запоминанию и т п.)

В понятие «дизайн - концепции» входит визуальное и смысловое единство предлагаемых услуг, всех составляющих элементов внутреннего оформления.

Дизайн - концепция включает в себя стилистическое и цветовое решение интерьера, выбор мебели, светильников и отделочных материалов на этапе эскизного предложения. Дизайн-концепция неразрывно связана как с общим планировочным решением, так и с решением каждой отдельной зоны жилого помещения в частности.

Можно сказать что дизайн-концепция - это эмоционально-пространственная идея, которая объединяет вокруг себя все решения в проекте, выраженная средствами архитектуры.

В дизайне среды предпроектные исследования рассчитаны не на появление одного, но «самого верного» решения, а сравнивают действенность разных предметных и пространственных средств для выполнения сверхзадачи проектирования - формирования атмосферы среды .

И это концептуально: эра «простых» одноплановых подходов к архитектурно-пространственной организации средовых объектов и систем заканчивается. Мы не можем себе позволить ориентироваться только на умелое использова­ние «естественных» источников их благоустройства (прямой или рассеянный солнечный свет, «натуральная» аэрация, непосредственный сток ливневых вод или самоуничтожение отходов и т.д.). На смену этой традиции идет эпоха «политех­нического» многофакторного формирования параметров среды, где природные данности (которых сегодня просто не хватает на всех) постепенно замещаются или дополняются ресурсами искусственного происхождения. В т.ч. такими, которые не подчиняются доводам здравого смысла или интуитивным регламентациям (как это происходит с большинством нынешних эстетических норм и установлений).

Более того, в некоторых случаях «искусственные средства» преобладают, особенно при дефиците ресурсов или в экстремальных ситуациях (городская теснота, пустыня, кос­мос), где они проходят всестороннюю проверку на эффектив­ность и надежность. Но глобальная тенденция однозначна - искусственные источники создания реальности, как бы они ни казались дороги, становятся обыденностью, всеоб­щим достоянием. Даже там, где полвека назад они считались непозволительной роскошью: в массовой застройке.

Главный инструмент проектировщика в этом деле - разработка дизайн-концепции будущего решения - идеи совместной работы (существования и развития) в пределах единой организационно-художественной системы (средового комлекса) трех внешне самостоятельных «самоцельных» функционально-пространственных структур:

средового процесса (который можно представить как физически необходимую функционально-эргономическую схему);


компонентов оборудования

этого процесса (материализующих в пространстве порядок осуществления процессуальных действий);

места для размещения процесса и его оборудования (объемно- пространственного «тела» среды}.

Все три структуры тесно взаимосвязаны: переставьте оборудование или измените форму пространства - изменится процесс, усовершенствуйте его технологию - потребуются другое оборудование и другое пространство. А в результате их интеграции появляется «допроектное» предложение, которое обеспечивает комплексное и «бесконфликтное» взаимодействие слагаемых среды.

Дизайн-концепция в средовом проектировании резко отличается от художественного замысла в архитектурном творчестве: в последнем превалируют собственно пространственные идеи.

Понимание термина «дизайн - концепция» предполагает решение задач средоформирования через синтез предложений и технических, и организационных» и пространственных одновременно. Только тогда обеспечиваются условия для идеального удовлетворения требований к среде ее отдельных «заказчиков» при обязательном выполнении тех запросов, которые предъявляет к ней заказчик «генеральный» - эстетические взгляды общества.

Окончательное оформление предметно-пространственных характеристик, олицетворяющих эти условия, выходит за рамки составления дизайн -концепции и является содержанием следующей фазы проектных действий - собственно проектирования архитектурно-дизайнерских форм. Но эффективность этих действий подготавливается предварительными аналитическими исследованиями. Поэтому составление дизайн - концепции есть самая ответственная и креативная фаза проектного процесса в средовом дизайне

УСЛОВИЯ СТАНОВЛЕНИЯ ДИЗАЙН-КОНЦЕПЦИЙ В ПРОЕКТИРОВАНИИ ЖИЛИЩА зависят от ряда факторов, отражающих как сложность строения жилой среды, так и обилие задач, которые ей приходится выполнять в жизни человека.

1. Прежде всего разные уровни организации среды выдвигают свои темы для поиска таких концепций:

дизайн-концепция отдельных помещений и ихблоков нацелена на оптимизацию разместившихся здесь «частных» функциональных процессов; поэтому тут особенно сильна роль специфического (для данной деятельности) оборудования и предметного насыщения;

дизайнерские идеи ячейки в целом больше опираются на «организационные» принципы пространственного формирования композиции квартиры;

общественная зона здания снова обращается к «техническим» формам решения свойственных ей эксплуатационных задач;

Для структуры жилого корпуса важнее веет идеи пространственного взаимодействия слагаемых его «тела» - внутридомовых коммуникаций и наборов жилых ячеек; кроме того, на этом уровне вступают в силу приемы обеспечения интерьеров здания природными богатствами (солнцем и воздухом), принадлежащими внешней среде района;

В планировочных образованиях доминирует роль организационно-пространственных предложений, но возникновение их параметров активно инициируется «техногенными» идеями обустройства процессуальных сторон жизни открытых пространств: ориентация пользователя в среде, размещение ландшафтных компонентов, устройство функциональных зон и т. д., из-за чего общая дизайн-концепция «внешней» среда жилища есть своего рода интеграция ряда «частных» концепций формирования ее отдельных архитектурно-дизайнерских подсистем.

Пример: Дизайн-концепция ресторана:

Требования к разработке торговой марки ресторана;

Принципы организации внешнего оформления;

Дизайн, стиль интерьера;

Мебель;
-Требования к персоналу;

Униформа персонала;

Меню;
-Логистика;
-Работа с поставщиками;

Принципы ценообразования

Создание концепции позволяет рассматривать ресторан с точки зрения единой маркетинговой системы, осуществляющей продажи, где все системы ресторана выполнены в соответствии с единой стратегией, определяемой концепцией.

Причем каждому уровню отвечают свои средства формообразования: первая позиция концентрируется на работе с оборудованием процесса, вторая занята организацией пространственных характеристик, третья сосредоточена на решении проблем движения в пространстве, четвертая озабочена построением объемной структуры, пятая соединяет в пространстве технологии реализации отдельных функций городской среды.

А все вместе они составляют комплекс дополняющих друг друга пространственных, процессуальных и дизайнерских решений, обнимающих по сути всю палитру возможных приложений архитектуры и дизайна к проблемам формирования жилища.

Таблица 1 Приоритеты средств разработки дизайн-концепции жилой среды

* и + показывают зоны преимущественного и обязательного использования данного средства.

2. Другой комплекс условий формирования дизайн - концепции связан с учетом источников ее возникновения. Их - три: прототипы (прямые образцы для подражания), аналоги (явления или объекты, подобные задуманным, но взятые из других сфер человеческой деятельности), новации и открытия, не использовавшиеся ранее в проектировании.

Первый источник - прототипы - самый распространенный и для массового проектирования весьма плодотворный. Во-первых, потому что позволяет решать «типовые» задачи самым эффективным способом - применяя многократно проверенные практикой решения. Во-вторых - поскольку в реальной работе отношение к проекту всегда связано с творческой модернизацией принятого за основу, его приспособлением к специфике данного заказа. Поэтому «хорошее» внедрение прототипа обязательно ведет к накоплению разного рода новых предложений, совершенствующих и развивающих первоначально привлеченную идею.

Но для художника невзыскательного наиболее опасный: следуя протоптанными ранее путями, очень легко скатиться к шаблону, тривиальному результату.

В сфере жилищного строительства прототипов (уже готовых сооружений, изделий, схем или форм) накопилось великое множество. И структурно-пространственных (типологических), например, дом меридиональный, коридорный, галерейный и т.д.; и связанных С устойчивыми приемами организации функции («нормали» лестничного узла без лифта, с лифтами для домов до 9 этажей, до 12 и выше), и эргономических (стандартный блок оборудования кухни}, и конструктивных - каркасная, панельная система. И, конечно, художественных - демонстрирующих особенности тех или иных эстетических примеров - от ордерных построений до излюбленных приемов известного мастера.

Обычно примеры, выбранные в качестве прототипов, являются своего рода эталоном, классикой целесообразности решения какой-либо частной задачи неким определенным набором средств и годятся чаще всего только в тех узких пределах, ради которых появились. Но, как правило, их практическая ценность столь велика, а сами он» так привлекательны, что проектировщики, почти не рассуждая, многократно расширяют области их применения, из-за чего эталоны превращаются в скучноватые, а то и надоедливые «повторения пройденного. Сохраняющие лишь часть своих достоинств - прежде всего конструктивно утилитарных или низменно бытовых.

Другими словами, если дизайн - концепция строится на применении какого-то прототипа, главная задача проектировщика - не нарушая нужных ему качеств, предложить такую деформацию остальных, чтобы идея приобрела вид нового, индивидуального решения.

Второй источник - использование аналогов и ассоциаций, Это явление более сложное: автор «прикладывает» к поставленной ему цели идеи и причины, взятые из других областей человеческой деятельности, из мира природы, науки и т.д.

Метод «синектика»

Наиболее важным и нужным для средового формотворчества является третий путь - поиск еще неизвестных предложений, адекватных действию или существованию физических и художественных законов или явлений, управляющих состоянием среды.

Средовые объекты и их компоненты, возникшие а результате такого поиска - наверное, самое интересное и перспективное из того, что создано в наши годы. Световоды в облике инженерных сооружений, искусственные «почвы», питание и полив растений, «одевающих» фасады зданий, эскалаторы и консольные панорамные) лифты для вертикальных коммуникаций и траволаторы для горизонтальных, трансформирующиеся конструкции, кондиционеры, строительные и отделочные материалы, меняющие свои свойства в зависимости от условий, в которых они находятся, отражатели. солнечные батареи, электронные информационные системы - каждая из этих, по сути, технических инноваций может и должна найти свое место при формировании разных качеств среды., В первую очередь - ее пространственных характеристик, которые служат генератором ее собственной эстетики и обрамлением художественного смысла привязанных к среде процессов. Чаще всего - за счет совершенствования условий для осуществления этих процессов.

Разумеется, дизайн-концепция, выстроенная таким образом, далеко не всегда связана с высшими технологиями или другими достижениями сегодняшней научной и технической мысли: многие секреты «дизайнерской» организации архитектурной формы давно и успешно реализованы в произведениях народного зодчества

Предпроектный анализ состоит из следующих 4-х этапов:

  1. Обследование, знакомство с ситуацией:
    1. контекст размещения объекта

§ что мы имеем в качестве объемов (какие именно площади - квадратные метры, количество окон, несущие «привязки», характерные (и не очень) технические особенности и прочее)

§ идеология - в чем заключается именно основная идея (вспомните, почему вы покупали именно эту квартиру или дом (если это новая квартира) и для чего вы затеваете новый переворот в своей жизни и жизни своих близких - если вы затеяли дизайнерский ремонт в уже давно существующем жилье).

    1. перечень его будущих свойств

§ мы составляем техническое задание на проектирование дизайна интерьера. Учитываем все, что можем вспомнить сами, что подсказывают домочадцы (в качестве своих необходимостей, потребностей, прихотей и проч.), что когда-то у кого-то подсмотрели и понравилось, решили, что вам это также крайне необходимо.

    1. изучение аналогов

§ для нас сейчас - это все! Это те самые идеи, которые должны придти нам в голову ну просто срочно! Перекапываем (практически лопатой) Интернет, пачками листаем журналы, просматриваем передачи по теме… Впрочем, я думаю, что какое-то время вы уже этим занимаетесь… Кстати, очень неплохо приходят идеи в путешествиях по новым странам (видимо, именно от смены привычной культуры). А на стыке культур (если задаться целью совместить одно с другим) - так вообще рождаются шедевры!!! А вообще, - красота - она повсюду, просто обратите внимание на то, на что раньше его не обращали.


1. процесс - что именно мы делаем;

2. пространство - где мы делаем;

3. предмет (технология) - как мы это делаем.

И вот теперь - мы абсолютно готовы к завершению предпроектного анализа, и его апогеем будет …

  1. Выработка дизайн-концепции - мы сравниваем темы, то есть предложения, распутывающие отдельные узлы вопросов и проблем; сводим их в различные варианты решения и, наконец, - выбираем из них наиболее эффективные, максимально удовлетворяющие наши потребности и запросы с учетом всей ситуации в целом и конкретных вещей в частности. Проще говоря, мысленно ответив себе на все вопросы, которые вас мучили и не давали покоя, вы приходите к единственно верному и выверенному решению оных.

Помимо этих 4 основных этапов, существуют также и промежуточные этапы . К ним смело можно соотнести такие, как:

  • Клаузура - быстрый набросок, не предполагающий никакой технической точности, но позволяющий очень быстро зафиксировать те мысли, что просто роем пронеслись одномоментною мыслью в голове (очень часто напоминает детские каракули).
  • Фор-эскиз - тот самый креатив, который просто рвется у вас изнутри! (можно без технической точности).
  • Эскиз - рисуем уже выверенный и отточенный вариант, если хочется - даже с прорисовкой наимельчайших деталей (хотя это совсем не обязательно, так как при действительном включении их в проект вам потребуется их прорисовывать именно в нужном масштабе, - тем не менее, - удовольствие получите гарантированно!).

Предпроектные исследования в контексте принципа средового проектирования - ориентация не на среднестатистического «клиента», а на индивидуальные особенности будущих жильцов

Образ жизни каждого потребителя фиксируется в объективных показателях (характер деятельности, возраст, привычки и предпочтения, вещи не­обходимые и любимые, семейное положение, отношение к природе, мечты и желания и пр.), которые в ходе проектирования суммируются в фунда­ментальные характеристики среды габариты пространства и набор его оборудования

Типология потребителей среды и характер их деятельности диктуют особенности ее эмоционального климата - иррационального представления о чувственных и эстетических характеристиках средового пространства, его оборудования и наполнения. Эмоциональная ориентация является предтечей формирования образа (атмосферы) среды.

Портрет потребителя Эмоциональная ориентация среды – определяющий фактор ее формирования и восприятия
Огородник
Хакер
Художник
Мать
Бизнесмен

Выбор архитектурно- дизайнерского решения средового комплекса предопределяет изучение факторов средоформирования, в том числе:

· персонаж (тип потребителя);

· эмоциональный мир персонажа (источник эстетических установок проектирования);

· процессы жизнедеятельности;

· формы оборудования;

· элементы предметного мира;

· психологические ориентиры;

· эстетические предпочтения

Комплексный анализ условий, обстоятельств и факторов проектирования:

процессы базовые и личные;

связь с квартирой.

Установки проектного решения: размер, конфигурация, цвет, фактура, связь с природой.

Практическое задание - провести предпрпоектное исследование с ориентацией на индивидуальные особенности потребителя.

1) Исследовать типологию потребителей среды и особенности ее эмоционального климата, заполнить таблицу:

2) Провести комплексный анализ условий, обстоятельств и факторов проектирования:

  • процессы базовые и личные;
  • оборудование основное и дополнительное;
  • украшения, произведения природы и искусства;
  • связь с квартирой.

3) Определить установки проектного решения: размер, конфигурация, цвет, фактура, связь с природой.

Иногда модели пишут на языках программирования, но это долгий и дорогой процесс. Для моделирования можно использовать математические пакеты, но, как показывает опыт, в них обычно не хватает многих инженерных инструментов. Оптимальным является использование среды моделирования.

В нашем курсе в качестве такой среды выбрана . Лабораторные работы и демонстрации, которые вы встретите в курсе, следует запускать как проекты среды Stratum-2000.

Модель, выполненная с учётом возможности её модернизации, конечно, имеет недостатки, например, низкую скорость исполнения кода. Но есть и неоспоримые достоинства. Видна и сохранена структура модели, связи, элементы, подсистемы. Всегда можно вернуться назад и что-то переделать. Сохранен след в истории проектирования модели (но когда модель отлажена, имеет смысл убрать из проекта служебную информацию). В конце концов, модель, которая сдаётся заказчику, может быть оформлена в виде специализированного автоматизированного рабочего места (АРМа), написанного уже на языке программирования, внимание в котором уже, в основном, уделено интерфейсу, скоростным параметрам и другим потребительским свойствам, которые важны для заказчика. АРМ, безусловно, вещь дорогая, поэтому выпускается он только тогда, когда заказчик полностью оттестировал проект в среде моделирования, сделал все замечания и обязуется больше не менять своих требований.

Моделирование является инженерной наукой, технологией решения задач. Это замечание — очень важное. Так как технология есть способ достижения результата с известным заранее качеством и гарантированными затратами и сроками, то моделирование, как дисциплина:

  • изучает способы решения задач, то есть является инженерной наукой;
  • является универсальным инструментом, гарантирующим решение любых задач, независимо от предметной области.

Смежными моделированию предметами являются: программирование, математика, исследование операций.

Программирование — потому что часто модель реализуют на искусственном носителе (пластилин, вода, кирпичи, математические выражения…), а компьютер является одним из самых универсальных носителей информации и притом активным (имитирует пластилин, воду, кирпичи, считает математические выражения и т. д.). Программирование есть способ изложения алгоритма в языковой форме. Алгоритм — один из способов представления (отражения) мысли, процесса, явления в искусственной вычислительной среде, которой является компьютер (фон-Неймановской архитектуры). Специфика алгоритма состоит в отражении последовательности действий. Моделирование может использовать программирование, если моделируемый объект легко описать с точки зрения его поведения. Если легче описать свойства объекта, то использовать программирование затруднительно. Если моделирующая среда построена не на основе фон-Неймановской архитектуры, программирование практически бесполезно.

Какова разница между алгоритмом и моделью?

Алгоритм — это процесс решения задачи путём реализации последовательности шагов, тогда как модель — совокупность потенциальных свойств объекта. Если к модели поставить вопрос и добавить дополнительные условия в виде исходных данных (связь с другими объектами, начальные условия, ограничения), то она может быть разрешена исследователем относительно неизвестных. Процесс решения задачи может быть представлен алгоритмом (но известны и другие способы решения). Вообще примеры алгоритмов в природе неизвестны, они суть порождение человеческого мозга, разума, способного к установлению плана. Собственно алгоритм — это и есть план, развёрнутый в последовательность действий. Следует различать поведение объектов, связанное с естественными причинами, и промысел разума, управляющий ходом движения, предсказывающий результат на основе знания и выбирающий целесообразный вариант поведения.

модель + вопрос + дополнительные условия = задача .

Математика — наука, предоставляющая возможность исчисления моделей, приводимых к стандартному (каноническому) виду. Наука о нахождении решений аналитических моделей (анализ) средствами формальных преобразований.

Исследование операций — дисциплина, реализующая способы исследования моделей с точки зрения нахождения наилучших управляющих воздействий на модели (синтез). По большей части имеет дело с аналитическими моделями. Помогает принимать решения, используя построенные модели.

Проектирование — процесс создания объекта и его модели; моделирование — способ оценки результата проектирования; моделирования без проектирования не существует.

Смежными дисциплинами для моделирования можно признать электротехнику, экономику, биологию, географию и другие в том смысле, что они используют методы моделирования для исследования собственного прикладного объекта (например, модель ландшафта, модель электрической цепи, модель денежных потоков и т. д.).

В качестве примера посмотрим, как можно обнаружить, а потом описать закономерность.

Допустим, что нам нужно решить «Задачу о разрезаниях», то есть надо предсказать, сколько потребуется разрезов в виде прямых линий, чтобы разделить фигуру (рис. 1.16 ) на заданное число кусков (для примера достаточно, чтобы фигура была выпуклой).

Попробуем решить эту задачу вручную.

Из рис. 1.16 видно, что при 0 разрезах образуется 1 кусок, при 1 разрезе образуется 2 куска, при двух — 4, при трёх — 7, при четырёх — 11. Можете ли вы сейчас сказать наперёд, сколько потребуется разрезов для образования, например, 821 куска? По-моему, нет! Почему вы затрудняетесь? — Вам неизвестна закономерность K = f (P ) , где K — количество кусков, P — количество разрезов. Как обнаружить закономерность?

Составим таблицу, связывающую известные нам числа кусков и разрезов.

Пока закономерность не ясна. Поэтому рассмотрим разности между отдельными экспериментами, посмотрим, чем отличается результат одного эксперимента от другого. Поняв разницу, мы найдём способ перехода от одного результата к другому, то есть закон, связывающий K и P .

Уже кое-какая закономерность проявилась, не правда ли?

Вычислим вторые разности.

Теперь все просто. Функция f называется производящей функцией . Если она линейна, то первые разности равны между собой. Если она квадратичная, то вторые разности равны между собой. И так далее.

Функция f есть частный случай формулы Ньютона:

Коэффициенты a , b , c , d , e для нашей квадратичной функции f находятся в первых ячейках строк экспериментальной таблицы 1.5.

Итак, закономерность есть, и она такова:

K = a + b · p + c · p · (p – 1)/2 = 1 + p + p · (p – 1)/2 = 0.5 · p 2 + 0.5 · p + 1 .

Теперь, когда закономерность определена, можно решить обратную задачу и ответить на поставленный вопрос: сколько надо выполнить разрезов, чтобы получить 821 кусок? K = 821 , K = 0.5 · p 2 + 0.5 · p + 1 , p = ?

Решаем квадратное уравнение 821 = 0.5 · p 2 + 0.5 · p + 1 , находим корни: p = 40 .

Подведём итоги (обратите на это внимание!).

Сразу угадать решение мы не смогли. Поставить эксперимент оказалось затруднительно. Пришлось построить модель, то есть найти закономерность между переменными. Модель получилась в виде уравнения. Добавив к уравнению вопрос и уравнение, отражающее известное условие, образовали задачу. Поскольку задача оказалась типового вида (канонического), то её удалось решить одним из известных методов. Поэтому задача оказалась решена.

И ещё очень важно отметить, что модель отражает причинно-следственные связи. Между переменными построенной модели действительно есть крепкая связь. Изменение одной переменной влечёт за собой изменение другой. Мы ранее сказали, что «модель играет системообразующую и смыслообразующую роль в научном познании, позволяет понять явление, структуру изучаемого объекта, установить связь причины и следствия между собой». Это означает, что модель позволяет определить причины явлений, характер взаимодействия её составляющих. Модель связывает причины и следствия через законы, то есть переменные связываются между собой через уравнения или выражения.

Но!!! Сама математика не даёт возможности выводить из результатов экспериментов какие-либо законы или модели , как это может показаться после рассмотренного только что примера. Математика это только способ изучения объекта, явления, и, причём, один из нескольких возможных способов мышления. Есть ещё, например, религиозный способ или способ, которым пользуются художники, эмоционально-интуитивный, с помощью этих способов тоже познают мир, природу, людей, себя.

Итак, гипотезу о связи переменных А и В надо вносить самому исследователю, извне, сверх того. А как это делает человек? Посоветовать внести гипотезу легко, но как научить этому, объяснить это действо, а значит, опять-таки как его формализовать? Подробно мы покажем это в будущем курсе «Моделирование систем искусственного интеллекта».

А вот почему это надо делать извне, отдельно, дополнительно и сверх того, поясним сейчас. Носит это рассуждение имя Геделя, который доказал теорему о неполноте — нельзя доказать правильность некоторой теории (модели) в рамках этой же теории (модели). Посмотрите ещё раз на рис. 1.12 . Модель более высокого уровня преобразует эквивалентно модель более низкого уровня из одного вида в другой. Или генерирует модель более низкого уровня по эквивалентному опять же её описанию. А вот саму себя она преобразовать не может. Модель строит модель. И эта пирамида моделей (теорий) бесконечна.

А пока, чтобы «не подорваться на ерунде», вам надо быть настороже и проверять все здравым смыслом. Приведём пример, старую известную шутку из фольклора физиков.

1.3.1. Принцип растровой графики. Растровое изображение представляет собой мозаику из очень мелких элементов ‑ пикселей. Оно похоже на лист клетчатой бумаги, на котором каждая клеточка (пиксель) закрашена определенным цветом, и в результате такой раскраски формируется изображение (см. рис. 1.7).

Как можно заметить, принцип растровой графики чрезвычайно прост. Он был изобретен и использовался людьми за много веков до появления компьютеров. Изображение строится из дискретных элементов в таких направлениях искусства, как мозаика, витражи, вышивка и др. Другой пример: эффективным способом переноса изображения с подготовительного картона на стену, предназначенную для фрески, является рисование «по клеточкам». Суть этого метода заключается в следующем. Картон с рисунком и стена, на которую будет переноситься рисунок, покрываются равным количеством клеток, затем фрагмент рисунка из каждой клетки картона тождественно изображается в соответствующей клетке стены.

Растровая графика работает с сотнями и тысячами пикселей, которые формируют рисунок. В компьютерной графике термин «пиксель» может обозначать разные понятия, такие как:

Наименьший элемент изображения на экране компьютера;

Отдельный элемент растрового изображения;

Точку изображения, напечатанного на принтере.

Поэтому, чтобы избежать путаницы, будем пользоваться следующей терминологией: видеопиксель ‑ наименьший элемент изображения на экране;

- пиксель ‑ отдельный элемент растрового изображения;

- точка ‑ наименьший элемент, создаваемый принтером.

При этом для изображения одного пикселя могут быть использованы один или несколько видеопикселей или точек.

Экран дисплея разбит на фиксированное число видеопикселей, которые образуют графическута сетку «растр» из фиксированного числа строк и столбцов. Размер графической сетки обычно представляется в форме N М , где N ‑ количество видеопикселей по горизонтали, а М ‑ по вертикали. На дисплеях используются, например, такие размеры графической сетки; 640 х 480, 800 х 600, 1024 х 768, 1240 х 1024 и др. Видеопиксели очень малы (менее 0,3 мм) и расположены близко друг к другу. Чтобы изображение могло восприниматься глазом, его необходимо составить из сотен или тысяч видеопикселей, каждый из которых должен иметь свой собственный цветовой оттенок. Увеличенный видеопиксель представляет собой обычный квадрат.

1.3.2. Достоинства растровой графики. У данного типа графики есть два основных достоинства, а именно:

1.Каждому видеопикселю можно придать любой из миллионов цветовых оттенков. Если размеры пикселей приближаются к размерам видеопикселей, то растровое изображение выглядит не хуже фотографии. Таким образом,растровая графика эффективно представляет изображения фотографического качества.


2.Компьютер легко управляет устройствами вывода, которые используют точки для представления отдельных пикселей. Поэтому растровые изображения могут быть легко распечатаны на принтере.

1.3.3. Недостатки растровой графики. В файле растрового изображения запоминается информация о цвете каждого видеопикселя в виде комбинации битов. Изображение наиболее простого типа имеет только два цвета (например, белый и черный). В этом случае для кодирования цвета каждого видеопикселя требуются два значения, значит, достаточно одного бита памяти ‑ двух (2 1) значений: 0 и 1. Если цвет видеопикселя определяется двумя битами, то мы имеем четыре (2 2) возможных комбинации 0 и 1: 00, 01, 10, 11, значит, уже можно закодировать четыре цвета. Четыре бита памяти позволяют закодировать 16 (2 4) цветов, восемь битов ‑ 256 (2 8) цветов, 24 бита ‑ 16777216 (2 24) различных цветовых оттенков.

Простые растровые картинки занимают небольшой объем памяти (несколько десятков или сотен килобайтов). Изображения фотографического качества часто требуют нескольких мегабайтов. Например, если размер графической сетки 1240×1024, а количество используемых цветов ‑ 16 777 216, то объем растрового файла составляет около 4 Мб, так как информация о цвете видеопикселей в файле занимает

1240 1024 × 24 = 30474240 (бит), или

30474240 ÷ 8 = 3 809 280 (байт), или

3 809 280 ÷ 1024 = 3720 (Кб),

или 3720 ÷ 1024 = 3,63 (Мб).

Таким образом, для хранения растровых изображений требуется большой объем памяти.

Самым простым решением проблемы хранения растровых изображений является увеличение емкости запоминающих устройств компьютера. Современные жесткие и оптические диски предоставляют значительные объемы памяти для данных. Оборотной стороной этого решения является стоимость, хотя цены на эти запоминающие устройства в последнее время заметно снижаются.

Другой способ решения проблемы заключается в сжатии графических файлов, т. е. использовании программ, уменьшающих размеры файлов растровой графики за счет изменения способа организации данных. Существует несколько методов сжатия графических данных. В простейшем из них последовательность повторяющихся величин (в нашем случае ‑ набор битов для представления видеопикселей) заменяется парой величин ‑ повторяющейся величиной и количеством ее повторений.

Такой метод сжатия называется RLE (Run-Length Encoding). Метод RLE лучше всего работает с изображениями, которые содержат большие области однотонной закраски, но намного хуже с его помощью сжимаются фотографии, так как в них почти нет длинных строк из пикселей одинакового цвета.

Сильно насыщенные узорами изображения хорошо сжимаются методом LZW (его название составлено из первых букв фамилий его разработчиков ‑ Lempel, Ziv и Welch).

Объединенная группа экспертов по фотографии (Joint Photographic Experts Group) предложила метод JPEG для сжатия изображений фотографического качества.

Растровое изображение после масштабирования или вращения может потерять свою привлекательность. Например, области однотонной закраски могут приобрести странный узор; кривые и прямые линии, которые выглядели гладкими, могут неожиданно стать пилообразными. Если уменьшить, а затем снова увеличить до прежнего размера растровый рисунок, то он станет нечетким и ступенчатым, а закрашенные области могут быть искажены. Причина в том, что изменение размеров растрового изображения производится одним из двух способов;

Все пиксели рисунка изменяют свой размер (становятся больше или меньше);

Пиксели добавляются или удаляются из рисунка (это называется выборкой пикселей в изображении).

При первом способе масштабирование изображения не меняет количество входящих в него пикселей, но изменяется количество элементов (видеопикселей или точек), необходимых для построения отдельного пикселя и при увеличении рисунка «ступенчатость» становится все более заметной ‑ каждая точка превращается в квадратик.

Выборка же пикселей в изображении может быть сделана двумя способами. Во-первых, можно просто продублировать или удалить необходимое число пикселей. Во-вторых, с помощью определенных вычислений программа может создать пиксели другого цвета, определяемого первоначальным пикселем и его окружением. При этом возможно исчезновение из рисунка мелких деталей и тонких линий, а также уменьшение резкости изображения (размытие). Итак, растровые изображения имеют ограниченные возможности при масштабировании, вращении и других преобразованиях.

1.3.4. Принцип векторной графики. В векторной графике изображения строятся из простых объектов ‑ прямых линий, дуг, окружностей, эллипсов, прямоугольников, областей одного или разных цветов и т. п., называемых примитивами. Из простых векторных объектов создаются различные рисунки. Комбинируя векторные объекты ‑ примитивы и используя закраску различными цветами, можно получить и интересные иллюстрации. Векторные примитивы задаются с помощью описаний. Примеры описаний:

Рисовать линию от точки А до точки В;

Рисовать эллипс, ограниченный заданным прямоугольником и т.п.

Информация о цвете объекта сохраняется как часть его описания, т. е. в виде векторной команды (а вот для растровых изображений хранится информация о цвете каждого видеопикселя). Векторные команды сообщают устройству вывода о том, что необходимо нарисовать объект, используя максимально возможное число элементов (видеопикселей или точек). Чем больше элементов используется устройством вывода для создания объекта, тем лучше этот объект выглядит.

Для получения векторных изображений, как правило, используются редакторы векторной графики (Adobe Illustrator CS2, Macromedia Freehand, CorelDRAW), которые широко применяются в области дизайна, технического рисования, а также для оформительских работ. Эти редакторы предоставляют в распоряжение пользователя набор инструментов и команд, с помощью которых создаются рисунки. В процессе рисования специальное программное обеспечение формирует векторные команды, соответствующие объектам, из которых строится рисунок.

Вероятнее всего, что пользователь в редакторе никогда не увидит векторных команд. Однако знания о том, как описываются векторные рисунки, помогают понять достоинства и недостатки векторной графики. Файлы векторной графики могут содержать растровые изображения в качестве объектов одного из типов. Большинство редакторов векторной графики позволяют только разместить растровое изображение в векторной иллюстрации, изменить его размер, выполнить перемещение, поворот, обрезку, но не дают возможности работать с отдельными пикселями. Дело в том, что векторные рисунки состоят из отдельных объектов, с которыми можно работать порознь. С растровыми же изображениями так поступать нельзя, так как объектом здесь является весь растровый фрагмент в целом. Но в некоторых редакторах векторной графики допускается применение к растровым объектам специальных эффектов размытия и резкости, в основе которых лежит изменение цветов соседних пикселей(пиксель обладает одним свойством ‑ цветом).

1.3.5. Достоинства векторной графики. Векторные изображения, не содержащие растровых объектов, занимают относительно небольшой объем памяти компьютера. Даже векторные рисунки, состоящие из тысяч примитивов, требуют память, объем которой не превышает нескольких сотен килобайтов. Для аналогичного растрового рисунка необходима в 10-1000 раз большая память.

Рассмотрим такой пример. Пусть векторное описание квадрата в системе координат экрана определяется следующим образом;

RECTANGLE 1, 1, 200, 200, Red, Green, здесь; (1, 1) ‑ координаты левого верхнего, а (200, 200) ‑ правого нижнего угла квадрата; Red ‑ цвет закраски, Green ‑ цвет контура. Такое описание требует 30 байтов памяти (двоичный код символа занимает 1 байт). Этот же квадрат в виде несжатого растрового изображения с 256 цветами будет занимать память объемом:

200 × 200 ÷ 8= 320000 (бит), или

320000 ÷ 8 = 40 000 (байт), или

40 000 ÷ 1024 = 39,06 (Кб).

Отсюда следует, что несжатое растровое описание квадрата в нашем примере требует в 1333 раза большей памяти (40000 ÷ 30=1333,333), чем его векторное описание. Таким образом, векторные изображения занимают относительно небольшой объем памяти.

Векторные объекты задаются с помощью описаний. Поэтому, чтобы изменить размер векторного рисунка, нужно исправить его описание. Например, для увеличения или уменьшения эллипса достаточно изменить координаты левого верхнего и правого нижнего углов прямоугольника, ограничивающего этот эллипс. И снова для рисования объекта будет использоваться максимально возможное число элементов (видеопикселей или точек). Следовательно, векторные изображения могут быть легко масштабированы без потери качества.

В ряде случаев возможно преобразование растровых изображений в векторные. Этот процесс называется трассировкой. Программа трассировки растровых изображений отыскивает группы пикселей с одинаковым цветом, а затем создает соответствующие им векторные объекты. Однако получаемые результаты чаще всего нуждаются в до­полнительной обработке.

1.3.6. Недостатки векторной графики. Прямые линии, окружности, эллипсы и дуги являются основными компонентами векторных рисунков. Поэтому до недавнего времени векторная графика использовалась для построения чертежей, диаграмм, графиков, а также для создания технических иллюстраций. С развитием компьютерных технологий ситуация несколько изменилась; сегодняшние векторные изображения по качеству приближаются к реалистическим. Однако векторная графика не позволяет получать изображения фотографического качества. Дело в том, что фотография ‑ мозаика с очень сложным распределением цветов и яркостей пикселей и представление такой мозаики в виде совокупности векторных примитивов ‑ достаточно сложная задача.

Векторные изображения описываются десятками, а иногда и тысячами команд. В процессе печати эти команды передаются устройству вывода (например, лазерному принтеру). При этом может случиться так, что на бумаге изображение будет выглядеть совсем иначе, чем хотелось пользователю, или вообще не распечатается. Дело в том, что принтеры содержат свои собственные процессоры, которые интерпретируют переданные им команды. Поэтому сначала нужно проверить, понимает ли принтер векторные команды данного стандарта, напечатав какой-нибудь простой векторный рисунок. После успешного завершения его печати можно уже печатать сложное изображение. Если же принтер не может распознать какой-либо примитив, то следует заменить его другим ‑ похожим, понятным принтеру. Таким образом, векторные изображения иногда не печатаются или выглядят на бумаге не так, как задумывалось изначально.

1.3.7. Особенности редакторов растровой и векторной графики. Для начала приведем сравнительную характеристику растровой и векторной графики, а результаты сведем в табл. 1.1.

Графические редакторы ‑ это инструменты компьютерного художника, с помощью которых он создает и редактирует изображения. В настоящее время существует много различных графических редакторов. Поэтому важно знать, какой редактор наилучшим образом подходит для решения конкретной задачи. Улучшение качества изображений, а также монтаж фотографий выполняются в редакторах растровой графики. Для создания иллюстраций обычно используются редакторы векторной графики, которые также называют программами рисования.

Векторная графика.

Цели : Познакомить учащихся с принципами и основными понятиями векторной графики; достоинствами и недостатками векторной графики.

Требования к знаниям и умениям:

Учащиеся должны знать:


  • что представляет собой векторное изображение;

  • принцип векторной графики;

  • основные понятия векторной графики: примитив, векторные команды;

  • кто составляет последовательность векторных команд;

  • достоинства и недостатки векторной графики.
Учащиеся должны уметь:

  • создавать и редактировать векторные изображения с помощью векторного графического редактора.
Программно-дидактическое обеспечение: ПК, плакаты, векторный графический редактор OpenOffice.org Draw.

План занятия.


  1. Постановка целей занятия.

  2. Изложение нового материала.

  3. Практическая часть.

  4. Закрепление изученного.

  5. Домашнее задание.
Ход занятия.

I. Постановка целей занятия.


  1. Что представляет собой векторное изображение?

  2. Что представляют собой примитивы?

  3. Каков принцип векторной графики?


  4. Каковы достоинства и недостатки векторной графики?

  5. Как создавать и редактировать векторные изображения с помощью векторного графического редактора OpenOffice.org Draw?
II. Изложение нового материала.

В векторной графике изображения строятся из простых объектов – прямых линий, дуг, окружностей, эллипсов, прямоугольников, областей одного или разных цветов и т. п., называемых примитивами . Из простых векторных объектов создаются различные рисунки (рис.1).

Комбинируя векторные объекты-примитивы и используя закраску различными цветами, можно получить и более интересные иллюстрации (рис.2,3).

В трехмерной компьютерной графике могут использоваться объёмные примитивы – куб, сфера и т.п.

Векторные примитивы задаются с помощью описаний. Примеры описаний:


  • Рисовать линию от точки А до точки В.

  • Рисовать эллипс, ограниченный заданным прямоугольником.


Рис. 1. Простые векторные изображения, созданные путем комбинации окружностей, прямоугольников и линий


Рис. 2. Векторные рисунки


Для компьютера подобные описания представляются в виде команд, каждая из которых определяет некоторую функцию и ее параметры. Символические команды для приведенных выше примеров описаний в векторном формате WMF (Windows Metafile) записываются так:




Рис. 3. Векторные рисунки

Информация о цвете объекта сохраняется как часть его описания, т. е. в виде векторной команды (сравните: для растровых изображений хранится информация о цвете каждого видеопикселя).

Векторные команды сообщают устройству вывода о том, что необходимо нарисовать объект, используя максимально возможное число элементов (видеопикселей или точек). Чем больше элементов используется устройством вывода для создания объекта, тем лучше этот объект выглядит.

Кто составляет последовательность векторных команд?

Для получения векторных изображений, как правило, используются редакторы векторной графики (Adobe Illustrator, Macromedia Freehand, CorelDRAW), которые широко применяются в области дизайна, технического рисования, а также для оформительских работ. Эти редакторы предоставляют в распоряжение пользователя набор инструментов и команд, с помощью которых создаются рисунки. В процессе рисования специальное программное обеспечение формирует векторные команды, соответствующие объектам, из которых строится рисунок .

Вероятнее всего, что пользователь такого редактора никогда не увидит векторных команд. Однако знания о том, как описываются векторные рисунки, помогают понять достоинства и недостатки векторной графики.

Файлы векторной графики могут содержать растровые изображения в качестве объектов одного из типов (рис.4). Большинство редакторов векторной графики позволяют только разместить растровое изображение в векторной иллюстрации, изменить его размер, выполнить перемещение, поворот, обрезку, но не дают возможности работать с отдельными пикселями. Дело в том, что векторные рисунки состоят из отдельных объектов, с которыми можно работать порознь. С растровыми же изображениями так поступать нельзя, так как объектом здесь является весь растровый фрагмент в целом. Но в некоторых редакторах векторной графики допускается применение к растровым объектам специальных эффектов размытия и резкости, в основе которых лежит изменение цветов соседних пикселей (пиксель обладает одним свойством - цветом).


Рис. 4. Фотография, вставленная в документ редактора векторной графики

ДОСТОИНСТВА ВЕКТОРНОЙ ГРАФИКИ

1. Векторные изображения, не содержащие растровых объектов, занимают относительно небольшой объем памяти компьютера. Даже векторные рисунки, состоящие из тысяч примитивов, требуют память, объем которой не превышает нескольких сотен килобайтов. Для аналогичного растрового рисунка необходима в 10 - 1000 раз большая память.

Рассмотрим такой пример. Пусть векторное описание квадрата в системе координат экрана определяется следующим образом: RECTANGLE 1,1,200,200,Red,Green

Здесь: (1, 1) - координаты левого верхнего, а (200, 200) - правого нижнего угла квадрата; Red - цвет закраски, Green - цвет контура.

Такое описание требует З0 байтов памяти (двоичный код символа занимает 1 байт).

Этот же квадрат в виде несжатого растрового изображения с 256 цветами будет занимать память объемом

200  200  8 = 320 000 (бит), или

320 000: 8 = 40 000 (байт), или

40 000: 1024 = 39,06 (Кб).

Отсюда следует, что несжатое растровое описание квадрата в нашем примере требует в 1333 раза большей памяти (40000: З0 = 1333,333), чем его векторное описание.

Таким образом, векторные изображения занимают относительно небольшой объём памяти .

2. Векторные объекты задаются с помощью описаний. Поэтому, чтобы изменить размер векторного рисунка, нужно исправить его описание. Например, для увеличения или уменьшения эллипса достаточно изменить координаты левого верхнего и правого нижнего углов прямоугольника, ограничивающего этот эллипс. И снова для рисования объекта будет использоваться максимально возможное число элементов (видеопикселей или точек). Следовательно, векторные изображения могут быть легко масштабированы без потери качества .

Замечание. В ряде случаев возможно преобразование растровых изображений в векторные. Этот процесс называется трассировкой . Программа трассировки растровых изображений отыскивает группы пикселей с одинаковым цветом, а затем создает соответствующие им векторные объекты. Однако получаемые результаты чаще всего нуждаются в дополнительной обработке.

недостатки ВЕКТОРНОЙ ГРАФИКИ

1. Прямые линии, окружности, эллипсы и дуги являются основными компонентами векторных рисунков. Поэтому до недавнего времени векторная графика использовалась для построения чертежей, диаграмм, графиков, а также для создания технических иллюстраций. С развитием компьютерных технологий ситуация несколько изменилась: сегодняшние векторные изображения по качеству приближаются к реалистическим. Однако векторная графика не позволяет получать изображения фотографического качества . Дело в том, что фотография - мозаика с очень сложным распределением цветов и яркостей пикселей и представление такой мозаики в виде совокупности векторных примитивов - достаточно сложная задача.

2. Векторные изображения описываются десятками, а иногда и тысячами команд. В процессе печати эти команды передаются устройству вывода (например, лазерному принтеру). При этом может случиться так, что на бумаге изображение будет выглядеть совсем иначе, чем хотелось пользователю, или вообще не распечатается. Дело в том, что принтеры содержат свои собственные процессоры, которые интерпретируют переданные им команды. Поэтому сначала нужно проверить, понимает ли принтер векторные команды данного стандарта, напечатав какой-нибудь простой векторный рисунок. После успешного завершения его печати можно уже печатать сложное изображение. Если же принтер не может распознать какой-либо примитив, то следует заменить его другим - похожим, понятным принтеру. Таким образом, векторные изображения иногда не печатаются или выглядят на бумаге не так, как хотелось бы .

III. Практическая часть.

Основные понятия

Векторные изображения состоят из графических примитивов.

Графический примитив – это простой графический объект: линия, дуга, окружность, эллипс, прямоугольник и т.п.

Векторные примитивы задаются с помощью описаний. Описания представляются в виде команд, каждая из которых определяет некоторую функцию и её параметр. Векторные команды для рисования формирует специальное программное обеспечение, входящее в состав векторного графического редактора.

Достоинства векторной графики:


  1. Векторные изображения занимают относительно небольшой объём памяти.

  2. Векторные изображения могут быть легко масштабированы без потери качества.
Недостатки векторной графики:

  1. Векторная графика не позволяет получать изображения фотографического качества.

  2. Векторные изображения иногда не печатаются или выглядят на бумаге не так, как хотелось бы.
Практическая работа 1.2. «СОЗДАНИЕ и редактирование РИсунков в Векторном графическом редакторе»

Цель работы: Научиться:


  • использовать различные возможности векторных редакторов: рисовать графические примитивы, трехмерные геометрические фигуры, вставлять текст;

  • использовать различные типы заливок;

  • устанавливать различные параметры для трехмерных объектов (освещенность, материал, цвет и др.).
Задание 1. Нарисовать различные фигуры. Выполнить заливку созданных объектов. Ввести текст, отформатировать его. Пример выполнения работы представлен на рис.5.


Рис.5. Пример выполнения практической работы

Для этого необходимо:


  1. Запустить программу OpenOffice.org Draw .

  2. Установить книжную ориентацию страницы и поля по 1 см (Формат ® Страница ).

  3. Нарисовать различные фигуры с помощью панели рисования (рис.6):

Рис.6. Панель рисования

Для этого необходимо:


  • выбрать нужную фигуру на панели рисования;

  • выполнить рисование, удерживая левую кнопку мыши нажатой.

  1. Установить для первых, например четырех фигур цвет. Для этого необходимо:


  • выполнить команду Формат Область… ;

  • перейти во вкладку Область ;

  • выбрать цвет заливки (произвольно).

  1. Изменить для следующего ряда фигур тип градиентной заливки. Для этого необходимо:

  • выделить фигуру щелчком мыши;

  • выполнить команду Формат Область… ;

  • перейти во вкладку Градиент ;

  • выбрать вид градиентной заливки.

  1. Следующий ряд фигур можно заштриховать. Для этого необходимо:

  • выделить фигуру щелчком мыши;

  • выполнить команду Формат Область… ;

  • перейти во вкладку Штриховка ;

  • выбрать вид штриховки;

  • при необходимости изменить тип и цвет линии.

  1. Для следующего ряда фигур установить заливку в виде текстуры. Для этого необходимо:

  • выделить фигуру щелчком мыши;

  • выполнить команду Формат Область… ;

  • перейти во вкладку Текстура ;

  • выбрать вид текстуры.

  1. Следующий ряд фигур заполнить произвольно.

  2. Добавить текст. Для этого необходимо:

  1. Отформатировать текст с помощью панели форматирования (рис.7):

Рис.7. Панель форматирования

Для этого необходимо:


  • выделить текст;

  • установить вид, размер, начертание шрифта, выравнивание текста (по центру).

  1. Сохранить документ в своей папке под любым именем в оригинальном формате (. odg ).
Задание 2. Нарисовать различные трехмерные тела (шар, конус и т.д.). Для созданных объектов установить различные параметры (режим освещенности, цвет и текстуру поверхности и др.).

Для этого необходимо:


  1. Создать новую страницу в созданном документе программы OpenOffice.org Draw командой Вставка Слайд .

Рис. 8. Вывести на экран панель 3D-объекты (рис.8) командой Вид Панели инструментов 3D-объекты .

  1. Последовательно выбрать на панели и нарисовать в поле рисования Шар , Полусферу , Тор , Конус , Цилиндр и Пирамиду (рис.9).

  2. Для созданных объектов установить режим освещенности. Для этого необходимо:

  • выделить одну из трехмерных фигур, например шар;

Рис. 9. нажать на правую кнопку мыши, появится контекстное меню (список команд, которые относятся только к выбранному объекту);

Рис.10 Присвоить .

  1. Для созданных объектов выбрать тип материала. Для этого необходимо:

Рис.11 установить выбранные свойства, нажав на кнопку Присвоить .

  1. Сохранить изменения в файле.
IV. Закрепление изученного.

Для закрепления изученного необходимо попросить детей ответить на вопросы:


  1. В виде чего хранится описание векторных изображений?

  2. Кто составляет последовательность векторных команд?

  3. Почему векторные изображения могут быть легко масштабированы без потери качества?

  4. Почему векторная графика не позволяет получать изображений типографического качества?
V. Домашнее задание.

Задание 1.

Создать небольшой рисунок (произвольный) в программе Word, используя возможности встроенного векторного графического редактора (панель рисования).

Выполнить масштабирование созданного изображения: сначала увеличить, а затем уменьшить.

Оценить: изменилось ли качество изображения при масштабировании (улучшилось; ухудшилось; осталось без изменения)?

Задание 2.

Дать сравнительную характеристику растровой и векторной графики. Представить её в виде таблицы:

Таблица 1. Сравнительная характеристика векторной и растровой графики